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E1, Machine offset (Fig. 9.2)

f Measurement data fc," calibration, Equation (3.1)

g The number of surface measurements

h ,r, Mean whole depth (Fig. 9.5)

H2  Horizontal setting for gear (Fig. 8.3)

The tilt angle of the pinion head-cutter (Fig. 9.3)

j The swivel angle (Fig. 9.1)

k The number of nonlinear equations

Parameter of location of coordinate origin (Fig. 3.2)
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IL' ree vector transformation matrix from system SY to

Sr

in The number of parameters of applied machine-tool settings

Ml Mean Point of the-retical surface E (Fig. 9.5)

Position vector transfo-mation matrix from system SY

to Sx

M 'Mean point of equidistant surface ,

77,, , Gear cutting ratio, Equation (9.3)

n The number of points of measurements

'Ali Variation of surface unit normal, Equation (9.43)

n, Unit normal vector of surface Ei

N, Normal vector of surface Ei

Oi The origin of coordinate system Si, i is the name of the
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p The index of a measured point

q Cradle angle (Fig. 9.1)

Ar; Variation of surface, Equation (9.42)

r, Position vector of surface Ej

rG Cutter point radius for gear (Fig. 8.1)

rF Cutter point radius for pinion (Fig. 9.4)

R Radius of calibration ring (Fig. 3.3)

RL Distance measured along the axis which is perpendicular to

pinion axis (Fig. 9.5)

R Pooition vector of E* (Fig. 6.1)

F Gaussian surfaces coordinate of pinion and gear (Fig. 9.3, 8.2)
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SUMMARY

A numerical method is developed for the minimization of deviations of real tooth surfaces from

the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of

machine-to,,l settings and distortion of surfaces by heat-treatment. The deviati)ns are determined

,'" c oodinate measurements of gear tooth surfaces. The minimization of deviations ,s based on the

pr,,per c irreci1in of titiallv applied nachine-to ol settings.

The contents of -iccomplished resrarch project cover the following topics:

(i) Descriptin of the principle of coordinate measurements of gear tooth surfaces.

kii) Derivation of th,oretical tooth sur faces (with examples of surfaces of hypoid gears and refer-

,', t,'s for spiral bevel gears).

(ii) )etermination of the reierence point znd the grid.

(iv) Determination of deviatior of real tooth surfaces at the points of the grid.

(v) Deterrrunatin of required corrections of machine-tool settings for minimization of deviations.

ThC pror(Idure for miniTmization of deviations is based on numerical solution of ani overdeter-

mined system of ? linear equations in 77 unknowns (m ., i?), where 72 is the number of noints of

measurements and m is the number of parameters of applied machine-tool settings to be corrected.

The developed approach is illustrated with numerical examples.



C=IAPTER 1

INTRODUCTION

rhe development of computer controlled machines has opened new opportunities for high precision

generat i~ n of double-curvatured surfaces-gear tooth surfaces, surfaces of rotors, propellers, screws,

etc. However. these opportunities can only be realized if the surface generation is complemented

with coordinate measurements of the manufactured surfaces. Such measurements allow one to:

(i) Identify the real machine-tool settings and correct them if necessary (important for generation

of master gears of high precision).

(ii) I)etermine the deviations of the real surface from the theoretical one, and minimize the

deviations by correction of the initially applied machine-tool settings.

In the second case there are many factors that cause the deviations: (a) distortion of the surface

by heat-treatment, (h) errors c-lused by deflection in the process of manufacturing, (c) errors of

installment of machine-tool settings, etc. Measuring the prototype of the surface (for instance, the

first gear of the being manufactured set), we can determine the deviations at n measuring points

and then minimize the deviations by controlling m n parameters of machine-tool settings.

The (;leason Works (USA), Oerlikon (Switzerland), Caterpillar (USA), and the Ingersol Milling

Machine (Co)mpanv (USA), and other Companies are pioneers in the development of computer

controlled macbnie for the generation of spiral bevel gears, hypoid gears, spur gears, helical gears,

2



and other objects. The Gleason Works engineers have developed an automated system and the G-

AGE program for the automatic evaluation of real gear tooth surfaces that is based on measurements

taken by using the Zeiss machine (Gleason Works, 1987) but without presenting the mathematical

description of the procedure 1'. The Caterpillar engineers have developed their own machine for

coordinate measurements and have used it for the evaluation and correction of real gear tooth

surfaces (Chambers and Brown, 1987) but without presenting the algorithm and analytical method

that they used in the measurement procedure for spiral bevel gears [21. It can be expected that

coordinate measurement of complicated surfaces will find wide application in industry.

The report covers the following topics:

(1) Determination of machine-tool settings for a real surface. Here it is assumed that the devia-

tions of the real surface form the theoretical one are caused only by the errors of machine-tool

settings. The proposed approach allows the required corrections of machine-tool setting to

be determined based on the data of coordinate measurements. The solution to this problem

is significant for generation of master-gears of high precision.

(2) Determination of corrections of machine-tool settings for a real surface with irregular devia-

tions. Such deviations can be caused by heat-treatment, deflection in the course of manufac-

turing, and other factors. The proposed approach assumes that the manufacturing process

provides repeatable surfact, deviations due to stable conditions of gear manufacturing and

heat treatment and allow the deviations to be minimized by appropriate corrections to the

machine-tool settings.

The proposed approaches cover the solutions to the above-mentioned problems and are illus-

trated by numerical examples for hvpoid pinion and gear tooth surfaces.
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The contents of the report is divided into two parts:

I. Gcneral Theory

In part I, the successful application of coordinate measurements needs the following proce-

dures :

(i) Analytical or numerical representation in the 3D space of the theoretical surface and the

equidistant surface where the center of the probe is located in the process of measure-

ments.

(ii) Determination of the grid where the center of the probe must be located.

(iii) A certain point on the theoretical surface must be chosen as the reference point.

(iv) Determination of deviations of the real tooth surface from the theoretical one that are

measured along the common normal to both surfaces.

(v) Minimization of deviations of the real surface by correction of previously applied machine-

tool settings.

II. Application to Coordinate Measurements of Hypoid Pinions and Gears.

4



Part I

GENERAL THEORY



CHAPTER 2

REPRESENTATION OF A THEORETICAL SURFACES

Henceforth, we will consider four surfaces: (i) E-the theoretical tooth surface, (ii) E(,,)-the surface

that is equidistant to ' and might be traced out by the probe center if the deviations are equal to

zero, (iii) E'-the real tooth surface, and (iv) *,)-the surface that is traced out by the probe center

when the real surface is measured. The subscript for symbols ZX(),Z and XE,) (for instance

Xt,,m) indicates in which coordinate system (S,, for designation ) the surface is represented.

We consider that a theoretical surface Et is represented analytically in a coordinate system St

that is rigidly connected to Yt. Two types of representation arise:

(i) in two-parametric form by a vector function

r,(,, 0) (2.1)

and (ii) in three-parametric form with related parameters.

rt(u, 0,6) (2.2)

f 0, 0, 0) = 0 (2.3)

6



Equations (2.2) and (2.3) represent Et as the envelope to the family of tool surfaces, E¢, -hat

is generated in coordinate system St by the tool surface in its relative motion with respect to the

being-generated gear. Parameters (u. 0) in expressions (2.2) and (2.3) are the Gaussian coordinates

(surface coordinates) of the tool; 0 is the generalized parameter of motion. Equation (2.3) is the

equation of meshing (Litvin, 1989) [3]. In the case where the tool surface is a ruled developable

surface, for example a cylindrical involute surface, a screw involute surface, or a cone, the equation

of meshing is linear in one of the surface parameters and it is easy to represent the generated surface

directly in a two-parametric form.

Henceforth, we will consider that the theoretical surface is represented in two-parametric form

as follows.

r,(uO;dj)C'2 (j = 1'... ,M); u. OcE; tx 0 (2.4)

The designation (2 means that the vector function has continuous derivatives for all arguments

at least to the second order. The Gaussian coordinates are designated by u and 0, and E is the

area of u and 0. The inequality in (2.4) indicates that Et is a regular surface. The designation

dj (j = 1 . m.. ,n) indicates constant parameters-the so-called machine-tool settings.

To illustrate dj we consider the case of generation of a formate cut hypoid gear (Fig. 2.1). The

generating surface is a cone with Gaussian coordinates u and 0 (Fig. 2.2). The installation of

the cone with respect to the cradle is determined with two parameters, H 2 and V2 (Fig. 2.3). The

installation of the gear in the plane y,, = 0 is determined with the parameters AX,,, and j),. Here:

Z!1X,, represents the location of the crossing point, O, with respect to the machine center, O;

7
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Gear

Figure 2.1: Hypoid Gear Drives
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Xp

Figure 2.2: Generating Cones
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vZc

Figure 2.3: Machine-Tool Settings For Formate Cut Gear
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and ;,, determines the orientation of gear axis :f in the process of generation. These paramete-s,

H 2 ,..2L.X,, and ,,,, are the machine-tool settings, dj. It is assumed that the parameters dj can

be varied to minimize the deviations of the real tooth surface to the theoretical one.

In addition to expression (2.4) we will also need a parametric representation of a surface 1t,,

that is equidistant to the theoretical surface N,. Such a surface is represented by:

rt(u. 0) - Ani(u, 0) (A 0) (2.5)

Here:

N N, Ort OrtlitN "N, u - 0 (2.6)

where Nt is the vector of surface normal; nt is the unit normal; and A is a scalar that determine

the distance between the two surfaces that is measured along the normal.

Examples of derivation of surfaces of spiral bevel gears have been represented in the works: F.L.

Litvin :,3' F.L. Litvin and Y. Zhang [4j, and R.F Handschuh and F.L. Litvin [5].

11



CHAPTER 3

PRINCIPLE OF COORDINATE MEASUREMENT

The machine for coordinate measurements (CMM) usually has four or more degrees of freedom. For

instance, the Zeiss machine used by the Gleason Works has four degrees of freedom, one rotational

and three translational motions 11. The three computer controlled tr ,7slational motions of the

probe are performed in three mutually-perpendicular directicns during the process of measurements.

The probe tip is a changeable ball whose diameter can be chosen from a wide range, according to

the specifications of the surfaces to be measured. In the Zeiss machine, the rotational motion is

performed by a rotary table whose axis coincides with the axis of the worl'roiece and can be rotated

together with the workpiece being measured.

Henceforth, we will consider that a coordinate svtem S--.(Xm,Y?,,,,zm) is rigidly connected to the

computer controlled 3-dimensional coordinate measuring machine (CMM) and z, coincides with

the axis of the gear and pinion (Fig. 3.1). The axic of the probe may be installed parallel to z,

(Fig. 3.1.a) or perpendicular to z, (Fig. 3.1.b), depending on tho design of the workpiece and the

surface (for instance, depending on the pitch cone angle of the gear or the pinion). The back face

of the workpiece, which is perpendicular to its axis and is finished to high precision, is installed

flush with the base plane of the CMM. The origin of the coordinate system Sm can be located in

the base plane or is related with it.

A Coordinate system St(xt,, y, zt) is rigidly connected to the being measured gear. In some

12
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cases we may assume that the ,rigin Ot coincide with O . Thus, the two coordinate systems .5,,,

ard .5t can be brought into alignment nlv by the rotation of the rotary table. In tlie most general

case, the orientation and location of St respe:t to .5,, are determined with two t. rarieters b and I

(Fig. 3.2). We will coilsider that parameter I is known from the installments and parameter is

deternied bY using the procedure f computatii)n described below (in chapter 4).

In o)rder to align the cot )rdinate system of too)ti surface S, with the CMM coordinate syster i,,

a reftrence pt,,nt, say (. ,, ) To the theoretical tooth surface. say Z, , must be specified.
. 10j0

The cl ,rdinates \, . ) f the pr,,be center, which correspond to (x,,, . . Q') can be

det ermined kn,.wing the radius of the probe and the normal to the surface by using equation (2.5).

(0) .0, (0,)|"ir t he initial installment o)f the tooth surface, the probe center is placed at (,,, . , Z,,, and

tht iitil surface is brought into contact with the probe by turning the rotary table. Therefore.

the t . surfac, is fixed in the process of measurements and the probe performs measurements by

translat i,,nal r ti Pat. The clisplaceme1 .t of the probe -enter in tie x,,,. y,,, and :,,, axis directions

represent its displacements frm the initial position.

The measurement data provide the coordinates. (-X . V". Z) of the pr,,be center, which traces

-ut in rcalitY an equidistant surface. say . to, the real tooith surface, say :*. in the process if

mn(asurement.

Kn,:,wing tite initial and current p,,siti ,ns (of the probe center, we can determine the surface

dev it i,,ns based , hin cli ange f pt sit in ft he cent er oft he probe in the process of measurements.

CMM Calibration:

Calibration of the CMM for a chosen probe ball can be accomplished using a calibratio. ring

(Fig 3.3). The initial coordinates of the center of the ball are:

I ,' 4o 7 R -a.O.f (3.1)

14
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Figure 3.2. Orientation of CNIN Coordinate System 5, and Workpiece Fixed Coordlinate System
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XAX

Calibration Ring

Figure 3.3: Calibration of CMM for Measurements Using a Calibration Ting
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Here R is the radius of the calibration ring and a is the radius of the ball. At the initial position,

the probe ball is in contact with the calibration ring. The y,,, = 0 alignment can be achieved if the

same displacement AXm of the probe corresponds to ±Aym displacements. The value of f can be

obtained by independent measurement.

17



CHAPTER 4

THE GRID AND REFERENCE POINT

4.1 The Grid

The grid (Fig. 4.1) is a set of points on the theoretical surface YXf that are chosen as points of

contact between the tooth surface and the probe [6]. Figure 4.2 shows the grid on the surface of a

spiral bevel gear.

(1). In accordance tc, the practice of measurements a set of 45 points is usually chosen for the

measurements that are located in nine longitudinal cross-sections of the gear and pinion surface

with five points in each cross-section (Fig. 4.2).

(2). Consider that the theoretical surface EX is represented in two-paramnetric form by the vector

finction rt(ii, ). Then the Gaussian coordinates for the grid points can be determined based on

the following considerat ions.

Zt,(U, 0) -- Ci

2(0) 2( 0) P2 (41)

Here: ci is the constant that determines the location of the chosen cross-section; pij determines the

shortest distance of the chosen point of the surface from the axis of the gear.

18
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Figure 4.1: Grid on Theoretical Surface E,
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Figure 1.2: Surface Grid on a Spiral Bevel Gear
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point (5,3) (ML\ean Point)

Near to Topland

5
4 F (Hleel)

(Toe) 3

L-- Nea to Root

1 2 345 6 78 9

Figure 4.3: Definition of Points on the Measurement Grids
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We can determine the Cartesian coordinates and curvilinear coordinates (u,0) for n =i j

points of measurements.

(3). The theoretical coordinates of the probe center for each grid point is determined by

considering that the probe center will lie on a surface E, that is equidistant from Et. The following

vector equation determines these coordinates in system St.

= r,(u) -4- an,(u.,) (4.2)

where a is the radius of the ball surface of the probe. Equations (4.2) represent in St the surface

that might be traced out by the center of the probe if the surface deviations are equal to zero.

4.2 Reference Point

One of the grid points (usually the center one, i.e., mean point) is chosen as the reference point

(Fig. 4.3). This point is used to install the gear on the CMM and to obtain the value of 6 that is

needed to represent the coordinates of the grid points in S,,. The CMM is provided with a rotary

table that allows the gear to be rotated to an initial position with respect to the probe.

We consider that the gear is installed with its back-face flush against the base plane of the

CMM such that the 09,, coincides with the O and the parameter 1 - 0 is known (Fig. 3.2). The

rotational alignment of the gear and the value of 6 can be obtained based on following two steps.

Step (i): the probe is brought into contact with the point on the real surface that is closest to the

chosen reference point.

Step (ii): the parameter 6 is determined based on coordinate measurements at this point.

We assume that the real surface deviations from the theoretical one and that we would like the

22



probe to contact with the real surface at the point closest to the chosen reference point. Assuming

that the variation in surface normal will be small, the measured coordinates (n ,Y, Z,,, of

the probe center can represented by using the following matrix equation (Fig. 3.2).

R [n) = (4.3)

cos6 sin6 0 0
- sin 56 cos6 0 0 (4.4)[M,,, = 0 0 1 0(44

0 0 0 1

Then we obtain

X-o) (X°) - bn,.) cos 6 + (Y(O) -t bn,,t,) sin 6 (4.5)

(X( ° ) + bn:,)sin6 (Y/°  - bn, t)cos6 (4.6)

Z )  
- (0) + bnzt (4.7)

Here: ( 0) , y ° Zl°)]T ) are coordinates of the point equidistant from the chosen reference

point as given by (4.2); (nit,n,,t, n ) are the components of the theoretical surface normal in St at

the chosen reference point; 6 is the parameter of orientation; and b is the normal-direction deviation

of the real surface from the theoretical surface at the chosen reference point.
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Together, equations (4.5-4.7) represent a system of 3 equations in 5 unknowns, X..?, 7(Zn 6

and b, that can not be solved uniquely. To obtain a solution we assume that at reference point

b 0, and for convenience we chooqe 10) 0. Then equation (4.7) can be solved for Z (0)

and from equations (4.5) and (4.6) we can derive the following relation for X °) that does not

depend on 6.

L (Y o)2 + (4.8)

After solving (4.8) for 6X,, can be determined from the following relation that can be derived

from equations (4.5) and (4.6) considering that y,0 ) b 0.

(X(O))2~ ~ +,7O)2 (0) x (0)
tan ( t (o) - f(o) (4.9)

2

Based on the above considerations, rotational alignment of the gear can be obtained as follows:

(i) install the probe with coordinates (X, ,n ,, , ,?n ) that have been determined as described

above;

(ii) turn the rotary table until the probe contact the to-be measured surface. The value of 6 for

this installation is given by equation (4.9).
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Process of Measurements

With the parameters 6 and 1 determined, matrix equation that is similar to (4.3) can be used to

find the S,,-system coordinates , X,,, Y,,, Z,,,, of the theoretical probe center for each grid point.

In the process of measurement, the probe center is controlled by the CMM to keep two measured

coordinates, say (X,,. Y,*) as close to the coordinates (X,,, Y') of the chosen grid point as possible.

The third measured coordinate Z,, will differ from Z,, if the real tooth surface deviates from

theoreti.JL one.
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CHAPTER 5

DETERMINATION OF REAL MACHINE-TOOL SETTINGS

5.1 Initial Considerations

The determination of real machine-tool settings is for the case when surface deviations are caused

only by errors in the installment of machine-tool settings. It is especially important for the gener-

ation of a master gear-a gear that is used as a model for the evaluation of manufactured gears. In

this section we use the deviations determined bv coordinate measurements to determinc the real

machine-tool settings and then to correct the installment of machine-tool settings.

In addition to the real machine-tool settings, we consider the parameters 6 and 1 (Fig. 3.2) as

unknowns.

The imaginary surface E(,,) that is equidistant to the theoretical surface , is represented in St

by (see equations 4.2):

Xt =x ,(u,0;dj) + an,:t(u,0;dj) A(u,0;dj)

yt(u,0;d j) + anyt(u,0;dj) = B(u,0;dj) (5.1)

Zf : zt(u,9;dj) + ant(u,0;dj) = C(u,0;d j)

26



Here: a is the radius of the probe sphere; A, B and C represent the resulting functions; and

dj (j = 1 . r.. n) are the to-be-determined real machine-tool settings that have been applied in

the process of generation.

Basic Equations

The determination of the real machine-tool settings is based on the following procedure.

Step 1. The coordinate transformation from St to S,, which is rigidly connected to the coordinate

measuring machine is based on the matrix equation:

, M t l, 1* (5.2)

where M?,, is represented by equation (4.4).

Considering that the measured coordinates of t' e probe center (X7 ,, ., Z,) coincide with

coordinates (X,,,. 1.7,l, Z,,,) on the theoretical equidistant surface , represented in .5,, 'e have

I-,,, Z7 z;ii (5.3)

Equations (5.1), (5.2) and (5.3) yield
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. , = .l(u, O dj) cos 6 -- B(u, 0 dj) sino

1", = - A(u,0;dj)sin 6 - B(u.0;dj)cos 1 (5.4)

7n - C(u,0:dj ) + I

Step 2. Our goal is to derive equations that are invariant with respec. to the parameters 6 and 1.

Equation (5.4) yield

y 2 -, 2 - A -2(tu. d) B 2(uto:dj) (5.5)

._A(A - X,-) - B(B - ;-)
tan - - (5.6)

2 BX,-, - .4141

I, also evident that

,, - C(u,.6;d ) (5.7)

Step 3. Henceforth we will drop the subscript rn indicating that the coordinates of a point are

represented in coordinate system S,. We will designate with g the numbcr of measurement points

and with subscript p the index of a measur.ed point. Based on equations (5 5), (5.6) and (5.7), we

obtain the following system of equations that is used for determination of the real machine-tool
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settings.

X *2 _ * 1-2 -(up, 2,; j '(,0, d ) 111

1 -J, = A ( Op; d) p;p . 1..., g) (5.8)

A,(A - 7:) Bp(Bp - ) <_,j I(A,+I - X,;-)+ Bp1 (B I -1 ,) (5.9)
Bp X; -pr' Bp+, X -I A ."4v~t, T,+I~- Armlt7

(1 p 1 q - 1)

Z , z; 7 , (ui" ,_ Op- dj)_- C(up, Op; dj) (I p- g - 1) (.0

Using the results ofn,-asurements for g points on the surface we obtaii (.q 2) e., ;ons (5.8)

(5.9) and (5.10) in: (i) 2g unknown surface coordinates (up,0p); and (ii) m unknown machine-tool

settings dj (j = 1 . . n. Thus, to determine in unknown machine-tool settings we need:

g = ni-- 2: k = 3g - 2 = 3771-4 (5.11)

where g is the number of surface measurements and k is the number of nonlinear equations that

have to be solved. Parameters 6 and I of orientation and location of coordinate system St with

respect to S, (Fig. 3.2). can be determined from equations (5.6) and (5.7).

In the case when the gear and the pinion are installed flush against the base plane of the CNMM

we can take I 0 (the origin Ot coincides with O,,,), and use the eqt .tion:
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Z C = (t 1;dj) (5.12)

in place of equation (5.10). For this case, the coordinate measurements of g points on the real

surface, results in (3g - 1) equation (5.8), (5.9) and (5.12), in 2g unknown surface coordinates

(ut,,O,), and rn unknown machine-tool settings di (j 1.... m). To determine the m unknown

machine-tool settings we need

g =m+ 1 k- 3g- 1=3m+2 (5.13)

5.2 Computational Procedure

The numerical solution of a large system of nonlinear equations is a complicated problem. For the

case where I 5 0 and 77 = 4, the number of equations to be solved is k = 16. The system of

nonlinear equations can be solved using computer software such as the IMSL subroutine DNEQNF

17'. However, the successful application of this program requires a good first guess- an initial set of

unknowns that is used for the first iteration. We propose a solution procedure that begins with a

system of four equations using the measurements for only two points on the surface. The number

of equations, k = 4, and the number of measurements, g = 2, can be obtained from equation (5.11)

considering that rn = 0. This means that for the f'rst step, errors in the macbine-tool settings are

neglected - the machine-tool variables d, d2 .... , d,,, in equation (5.8), (5.9) and (5.10) are set to
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the nominal values d(° ) d (o)

Step 1. An initial guess for the system of 4 equations is obtained as follows: (i) an approximate

value for I is determined by measurements, then (ii) neglecting the errors of machine-tool settings,

approximate values for the surface coordinates of two measured points are determined using the

following equations.

C(u,,, 0,,) = - 1 (p = 1 2) (5.14)

A2 (U), O t)- B2 (U,, 1 ) = X.2 y. 2  (p 1,2) (5.15)

Step 2. Knowing the approximate values of (u.0) for the two points of measurement, we then

obtain more precise solutions for surface coordinates using th system of four equations:

A2(u,,01) + B 2(u), ) x-2 + 2 (5.16)

.4"(1,02) + B 2 (U2. 2 ) x 2 + 2 (5.17)

(I2(U2, 02) - ('1(ll, 0) Z; - Z; (5.18)

Aj(A, - X) + B,(B - Y7) _ A 2 (A 2 - X*) + B2 (B2 - 12)1 - B (5.19)
B1X' - AIY" B2 X - A 2)"-

obtained from equation (5.8), (5.9) and (5.10) considering that g = 2, and neglecting errors in the

machine-tool settings.
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Step 3. The solution obtained for the previous step is then used as the initial guess for a larger

sy-tem , " L, 7 eiqations (5.9), (5.9) and (5.10), obtained by considering that one machine-tool

setting is a variable, and using g = 3 measurement points.

Step 4. Gradually the number of machine-tool settings that are considered as variables are in-

creased until eventually the exact values for the whole set of j = 1,.. . , m unknowns machine-tool

settings are determined using a system of k = 3rn + 4 equations (5.8), (5.9) and (5.10). Knowing

the real values of the machine-tool settings we may correct the settings and eliminate the deviations

of the real surface from the theoretical one.

We can expect that in some cases the real tooth surface will be substa'tially distorted due to

errors other than errors in the applied machine-tool settings. For these cases, we use the procedure

described in chapter 6 and 7 to improve the precision of the generated surface.



CHAPTER 6

DETERMINATION OF DEVIATIONS OF REAL TOOTH SURFACE

Let us consider in coordinate system Sm two surfaces: (i) Y(c)m that might be traced out in Sm by

the center of the probe if the gear tooth surface is an ideal surface, and (ii) surface E*) that is

traced out by the center of the probe in the case when the gear tooth surface is the real surfaces

(Fig. 6.1).

The position vector of the probe center for the theoretical equidistant surface E(,),, is deter-

mined in Sm with the equation similar to (4.2), i.e.,

Pmnp = rLl(u , O d} ° )) + n-p ( u p , O d) p d0 ° }) (p= 1,... ,45 ; j 1,... ,m) (6.1)

where, subscript p is the index of a measured point.

By measurements of the real surface the position vector of the probe center may be represented

as

R, ,  rnp(up Opd(0)) + Ap n,,p(up,,0. 1 djO)) (p 1.,45 ;j=1, ,m) (6.2)

where A. determines the real location of the probe center on surface "..),n and is considered along

the normp! to the theoretical surface E,.
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Figure 6.1: Surface Notation's
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Subscript "m" indicates that both surfaces are represented in S,,,; r,,, is the position vector

of the th,-oretical tooth surface E,,,; subscript "p" indicates that the current point of the grid is

considered; (up and 6p) are the theoretical surface Gaussian coordinates that are known for each

grid point; d) (j 1. m) represent the initial theoretical machine-tool settings; , is the

unit normal at the current grid point; R,*,,, = (X,*P, Y,P, ZJ,*, ) is obtained from the measurements.

Henceforth, we will assume that both surfaces have the same direction of the normal.

Equations (6.1) and (6.2) yield

S(pp - rp) • 11 np (6.3)

A,, -(RTP r7rp) - nrnp (6.4)

The deviatiop of the real tooth surface EM from the theoretical surface E,, is measured along

the normal to the theoretical surface and can be represented as

b, = A,, - a - (R, ,- p,,p) • np (6.5)

Taking into account equations (6.4) and (6.5) we obtain that

\by-) ,- (Xn, -X.,) + (I- 1,- ,).Yn,,.. + (Z, - np (p 1,... 45) (6.6)

where, the subscript p is the index of a measured point; (Xn7),I,1 , Z,*) are the coordinates of

the center of the probe obtained by measurements; (Xnp(up, Op), Yw(Uv, 0t,), Zmp(up, 0,)) are the

35



cartesian coordinates of the center of the probe for surface XC.r that is equidistant to the theo-

retical surface EM that are represented in S-,; nrT,,p(up,Op), ny-p(u,,, Op) and nzmp(up, Op) are the

projections in S,,, of the unit theoretical surface normal. Surface parameters (up, Op) are considered

as known for each point of measurements.
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CHAPTER 7

MATHEMATICAL ASPECTS OF MINIMIZATION

Basic considerations

We consider two steps for computerized minimization of deviations of real tooth surfaces [91:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations.

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The gear and the pinion tooth surface in accordance to expressions (2.4) are represented in S,

as follows,

r,, = rf,(u, 0, dj) ; nT = n,(u, 0, dj) (7.1)

In equations (7.1), the tooth surface is represented in terms of surface coordinates u and 0. For

simplicity, the subscript "m" is dropped in the following derivations. The first order variations

of the surface that is caused by the change of machine-tool settings and surface coordinates is

represented as

37



6 r Dr Dr ' Dr
6r 90O + Ou + Or6dj (7.2)

where, rn is the number of machine-tool settings.

We multiply both sides of equation (7.2) by the surface unit normal n and take into account that
Dr Dr Dr Dr
- . n = Or " n = 0 since 9 and --- lie in the plane that is tangent to the surface. The surface

normal variations can be found as

6r - n . n)6dj (7.3)
j=1 d n6d

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will obtain an overdetermined system of n linear equations in m unknowns ( m is equal to the

number of machine-tool settings) represented as

M (9r TIn

Y(- • np)6dj a6dj = Ab,, (p 1 n) (7.4)j=10d j=1

where, subscript p is the index of a measured point.

The number n of equations is equal to the number of points for measurements. In this report,

the number n is equal to 45 as mentioned in chapter 4
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We can now consider a system of n linear equations in m unknowns (m < n) of the following

structure

ax!6d + a 1 26d 2 + ... + al, 6dn = Abl
a216dl + a 2 26d 2 + ... + a2,bdm = Ab2

(7.5)

af,,idi + a,,26 d2 + ... + alnlf 6 d, = nAbJ

Here:

/Abp = (R 1,P - Prop) nmP (p = 1,...,n) (7.6)

where subscript p is the index of a measured point; ap3 (p = 1,...,n;j 1,...,m 1 represent the

dot product of partial derivatives _ and unit normal np (p =1.... ; j 1,... ,m).

The system (7.5) of linear equations is overdetermined since n < n. The mathematical aspect of

the problem for the minimization of deviations is the determination of such unknowns 6dj (j =

1 .... m) that will minimize the difference between the left and right sides of equations (7.5). One

of the widely used methods for the solution of the overdetermined system of linear equations is the

least-square method. In this work we have used a commercially available subroutine DLSQRR of

IMSL MATH/LIBRARY [7] for computerization of the procedure.
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Part II

APPLICATIONS TO
COORDINATE MEASUREMENTS

OF HYPOID PINIONS AND
GEARS
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CHAPTER 8

Minimization Of Deviations of Face-Milled Hypoid Formate Gear

8.1 Equations of Theoretical Tooth Surface E 2

The head-cutter is provided with inner and outer straight-lined blades as it is shown in Fig. 8.1.

The blades that are rotated about the axis of the head-cutter generate two cones. Each tooth side

of formate face-hobbed gear is generated by a cone and the gear tooth surface is the surface of

the generating cone. The angular velocity of rotation of blades is not related with the process of

surface generation but depends only on the desired velocity of cutting. Usually, the formate gear

of a hypoid drive is ('ut by the duplex method [8,9]. This means that both sides of the gear space

are generated simu aneously by a head cutter and the machine to-: settings are the same for both

sides.

Both generating cones (Fig. 8.2) can be represented by the same equation given as

[ -SG cos aG
r (rG - sG sin oG)sin9 G (8.1)

(rG - sG sin aG) cos OG

Here: r,. is the position vector; rG r ) is the cutter tip radius; SG S ( i ),  = ), (i=1,2); s )

and a ) are negative for concave side , and positive for convex side (i 1,2 for concave and convex
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Figure 8.1: Head Cutter for Tooth Surface Generation
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46I

Figure 8.2 Generating Cone Coordinate System
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side, respectively). Parameters SG and OG represent the Gaussian coordinates of the generating

surface. The unit normal to the generating surface is represented by the equations

Or, Or,. Nc sin QG ]
=- x ; = - = -COS OG sin OG (8.2)
N SG 90 G ! N, I - COS aa COS G

Fig. 8.3 shows the installment of thm: head-cutter (generating cone) and the gear on the cutting

machine. Coordinate systems S,,, S,, and S2 are rigidly connected to the cutting machine, the head-

cutter and the being generated gear, respectively. In the process of generation, all three coordinate

systems do not perform relative motions with respect to each other since the gear is formate cut.

Thus we may coasider that they are rigidly connected each to other. The generated gear tooth

surface is the same as the surface of the generating cone for this type of gear. The installment

of the head cutter is determined with machine-settings H2 and l- that represent the location of

origin 0,. of coordinate system ,. in S,,. The installment of the gear on the cutting machine is

(2)
represented by settings 17r, and AX,,. The origin 02 of coordinate system S2 coincides with

the point of intersection of the shortest distance of the hypoid gear drive with the gear axis (i.e.,

crossing point). Parameter AX,,, represents the location of 02 with respect to O0 -the origin of S,.

(2
Parameter .y, represents the orientation of gear axis in plane y,, = 0. The set of parameters H2,

l . AX,, and 4r,2) represents the set of the to-be corrected settings for minimization of deviations

of real gear tooth surfaces. The theoretical gear tooth surface E 2 and the surface unit normal are

represented in .52 by using the following matrix equations

r,2 (sG.OG,d 3 ) = 2r:rc(sG, O) -- fdrG OC) (8.3)
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Axis of Rotation Y2

Figure 8.3: Installment of the Head Cutter with respect to Machine and Workpiece.

(For Formate Manufacture There Is No Rotation About Cradle Axis x_ or Workpiece Axis 22)
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Cos IM, 0- Sin 777L 0

_ 0 1 0 0IM2,] = (2 - (2) 0 ](8.4)
.(2) 0 CS_(2) ZX

• s in I ,m 0 o 7 , - X ,

0 0 0 1

1 0 0 0
0 1 0 -V2VE 0 0 1 H 2  (85)

0 00 1

n2(OG) [L2,[n,] = [L 2 oH[Lo,.]<u(OG) (8.6)

Cos 1i 0 - sin I(8.7[L2(] 0 o 0 (8.7)
• (1 ) O S ( 2)

1l )<' 0 0O 1Tr

[Lo 0 1 0 (8.8)
0 0 1

Equations from (8.1) to (8.8) enable the determination of the theoretical gear tooth surface Y-2

and its unit normal as (2.4),

r2('SG, OG;dj) 6 C2 (j 1,... ,4) ;sa,OG cE ; n2(OG,yI( ', ) $ 0 (8.9)
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Here dj are the machine-tool settings AX,,, H 2, I2 and IM . The Gaussian surface coordinates

are designated by SG and OG-

We will also need the parametric representation of a surface E(,)2 that is equidistant to the

theoretical surface E 2 . Such a surface is represented as (4.2),

P2 - r2(SGOG) + an,(OG) (8.10)

where a is the radius of the ball surface of the probe.

8.2 Determination and Minimization of Deviations

After the theoretical tooth surface E2 of hypoid gear are obtained, the deviations of the real

surface from the theoretical one and minimized the deviations by corrections of the previous applied

machine-tool settings can be determined in chapter 6 and 7. Both sides of a formate cut gear tooth

are generated simultaneously (by duplex method), and the machine-tool settings are the same for

both sides. Therefore the minimization of deviations for both side surfaces of the tooth must be

obtained by the appropriate change of the same machine-tool settings.

Computational Procedure

The computational procedure is similar to that we discussed in Part I as follows:

Step 1. Create grid points on the to-be measured surface that are chosen as points of contact

between the tooth surface and the probe (in chapter 4).

Step 2. Determine the reference point in coordinate system S,,, (in chapter 4).

Step 3. Determine the deviations of real both surface from equation (6.6).
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Step 4. Minimize the deviations from equation (7.4).

8.3 Results of Coordinate Measurements and Minimization of Deviations

for Hypoid Gears

The numerical example is based on the experiment that has been performed at the Dana

Corporation (Fort Wayne, USA). The deviations of real gear tooth surfaces for both sides of the

gear tooth have been obtained by measurements on the Zeiss machine. The developed approach

has been used for minimization of obtained deviations. The number of measured points is p = 90

of both sides of the tooth (p = 1 .... 45 for convex side ; p = 46,... ,90 for concave side). Fig. 8.4

and Fig. 8.5 illustrate the deviations ALb, of the real surface from the theoretical one for the driving

side and coast side, respectively. The input data, original machine-tools settings, the correctiuA, ol

machine-tool settings and the corrected machine-tool settings are shown in Table A.1 in Appendix.

The experimental data include the coordinates of theoretical surface, the projections of surface unit

normal, and coordinates of the real surface (obtained by measurements) are represented in Table

A.2-A.7 in Appendix. Based on the corrected machine-tool settings, we can create a new surface

which will optimally fit the theoretical surface after the surface is distorted by heat-treatment during

manufacture. The minimized deviations between the nex. surface and the theoretical surface are

shown in Fig. 8.6.
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Figure 8.6: Minimized Deviations
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CHAPTER 9

Minimization Of Deviations of Face-Milled Hypoid Pinion

9.1 Generation of Pinion Theoretical Tooth Surface E,

The pinion tooth surface is generated as the envelope to the family of tool cone surfaces. The

derivation of the generated pinion tooth surface is based on ideas that have been represented in

reference [3,10].

Coordinate Systems

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, Sot(xo, yo', zo')

and Sq(Xq, yq, zq) that are rigidly connected to the cutting machine (Fig. 9.1 and Fig. 9.2), and

(ii) the movable coordinate systems S,, and S1 that are rigidly connected to the cradle of cutting

machine and the pinion, respectively. The origin, O1, of coordinate system S1 coincides with the

point of intersection of the shortest distance of the hypoid gear drive with the pinion axis (i.e.,

crossing point). In the process of generation the cradle with S, performs rotational motion about

the zo,'-axis with angular velocity w(c) and the pinion with S1 performs rotational motion about

the xq-axis with angular velocity w(P ) (Fig. 9.2).

The tool (the head-cutter) is mounted on the cradle and performs rotational motion with the

cradle. Coordinate system St is rigidly connected to the cradle. To describe the installment of the

tool with respect to the cradle we use coordinate system Sb (Fig. 9.1 and Fig. 9.3).
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Figure 9.1: Cutting Machine and Cradle Coordinate Systems
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Figure 9.2: Angular Velocities of Cradle and Pin-ion
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Figure 9.3. Pinion Head-Cutter Surface
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The required orientation of the head-cutter with respect to the cradle '41 is accomplished as

follows:

(i) coordinate ysL-rms S, and St are rigidly connected and tL , '!ey are turned as one rigid

body about the z,,-axis through the swivel angle j (Fig. 9.1);

(ii) then the head-cutter with coordinate system St is tilted about the yb-axis under the angle i

(Fig. 9.3.b)). The head-cutter is rotated aiout its axis zt but the angular velocity ;a this

motion is not related with the generation process and depends only on the desired velocity

of cutting.

It will be shown below that the deviations of real pinion tooth surface can be inimized by

corrections of parameters of installment of the pinion 1nd the head-cutter. These pinion setting

parameters are E,,- the machine offset, j,,- the machine-root angle, AR- the sliding base, AA-

the machine center to back (Fig. 9.2). The head-cutter settings parameters are: S?- radial setting,

0,- initial value of cradle angle, j- tb- swivel angle (Fig. 9.1) , and i- the tilt angle (Fig. 9.3.b).

9.2 Equations of Theoretical Tooth Surface

Tool Surface Equations:

The head-cutter surface is a cone and is represented in St (Fig. 9.3) as

(rF + SF sin OF) cos OF

rt(SF,bF) (rF + SF sin aF) sin OF (9.1)
-SF COS oF

Here: (SFOF) are the Gaussian surface coordinates, (IF is the blade angle and rF is the cutter
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point radius. Vector function (9.1) with or- positive and OF negative represents surfaces of two

head-cutter that are used to cut the pinion concave side and convex side, respectively (Fig. 9.4).

The unit normal to the head-cutter surface is represented in St by the equations

CO cO F _os OF

lt [ OF sin OF (9.2)

- sin OF

Family of Tool Surfaces

The cradle with the mounted head-cutter and the pinion perform rotational motions about the

axes-:,,, and x,, respectiv, iy. The angles of cradle and pinion -otation, q and 01 are related by the

equation

q = 0- (9.3)

,c~)

Here: ",. is the initial value of cradle angle and m,1, =__W is the gear civtting ratio.

The family of tool surfaces is generated in S and this family is represented by the matrix

equation

rl (SF, gF, Q1) m ... I,(0i) qn, ] 3 A,',][Mbl A htrt (SF , OF) (9.4)

Coordinate system S,, is an auxiliary fixed coordinate system whose axes are parallel to axes of

.5,,, (Fig. 9.2). Mvatrices in equation (9.1) are represented as follows
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cosi 0 sini 0
si = 0 1 0 0-sini 0 cos/ 0 (9.5)
0 0 0 1

-sinj - cosj 0 SI 1
M:,b = Cos j - sinj 0 00 0 1 0 (9.6)

L 0 0 0 1

cos q sin q 0 0
M -sinq cosq 0 00 0 10 (9.7)

0 0 0 1

1 0 0 0

[M7, , 0 1 0 E, (9.8)
0 0 1 -AB
0 00 1

cosy r 0 sin-, -AA

0 1 0 0 (9.9)L MqT 1s(1 )  099
- sin f4n 0 Cos m 0

0 0 0 1

59



1 0 0 0

r ] 0 COS1 sinl01  0 (9.10)
0 - sin 1  cos 1  0
0 0 0 1

Matrix equation (9.4) and tool surface equation (9.1) represent in S 1 the family of tool surfaces

in the form

ri = r(sf, OF, 01) (9.11)

Equation of Meshing

The pinion tooth surf . .. generated in S1 is the envelope to the family of tool surfaces. To

determine such an envelope we have to derive the equation of meshing [3] by using the equation

n (r ) . v ( r )) = N (P) . -v(cp) = f(SF,OF,,6) = 0 (9.12)

where n (" ) and N (") are the unit normal and the normal to the tool surface, and v(cl ' ) is the velocity

in relative moLion.

Equation (9.12) is invariant with respect to the coordinate system where the vectors of the

scalar product are represented. Representing those vectors in S,, we can derive the equation of

meshing using ihe following procedure

Step 1.: Vector n,,, can be represented as
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no, = (9.13)

where [Li is the 3 x 3 submatrix of [M]. The superscript in nP,) is dropped for simplification of

designations.

Step 2.: The sliding velocity v,:'0 (see [3]) is represented by (Fig. 9.2):

)(c) ( )
V/ =( O - x r,,] + (OoA x w(P )) (9.14)

Here:

rot [AI,,.,][AI, ][Mbt]rf (9.15)

OQA -[0 E, L 1 A-T (9.16)

W(0 -() -[Cos (),, 0 sin ] - (I T 1) (9.17)

,(c)  -[0 0 ma.] (9.18)

Equations (9.12), (9.13) and (9.14) yield the equation of meshing in form

f(SF-O,61) = 0 (9.19)
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Pinion Tooth Surface Equations

The pinion tooth surface equations are represented in three-parametric form by the equations

rl(sl,OF,oi) = [AMt]rt(sF,OF) f(SF,OF,01) = 0 (9.20)

However, since equations (9.20) are linear with respect to the Gaussian coordinate SF we can

eliminate ,;F and represent the pinion tooth surface in two-parametric form as

r, (OF,61, dj )EC2  (OF, 1 ) (E (9,21)

Here: dj 1 . 8) designate the installment parameters; E,,,,L ,,)y AB.AA.SR,,.,j and i

(2 designates that the vector function has derivatives on arguments OF and ol at least of the first

and second order.

The normal to the pinion tooth surface is represented as

nl(, (O , 01 dA!) (9.22)
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where dk (k = 1,2, 3,4) designate the installment parameters ,,,, and i.

9.3 The Grid

We recall that the grid (Fig. 4.1) is a set of puints on the theoretical surface E that are chosen as

points of contact between the tooth surface and the probe.

The development of the grid is based on the following considerations (see chapter 4):

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the

measurements that are located in nine longitudinal sections of the pinion surface with five points

in each section (Fig. 4.3).

(2). Mvean point Al (Fig. 4.3 and Fig. 9.5) of the theoretical surface E is usually chosen as the

referencc point, that is necessary for the initial installment of the probe on the coordinate mea-

surement machine. Obviously, the real tooth surface X* does not pass through M and the surface

normal at V intersects the real surface at AP. We can consider that an imaginary theoretical

surface , that is equidistant to E passes through M* and the deviations of the real surface are

determined with respect to E(,.) .

As shown in Fig. 9.5 the position of the mean point .11 can be represented in S, by XL and

RL, which are determined by the following equations

h,

XL = AcosF 1 , (bG --- )sinri (9.23)

2RL A sinE 1 - (bG h )cos Fi

Here, A is the mean cone distance; F1 is the pinion pitch angle; bG is the mean dedendum and h,,

is the mean whole depth; XL and RL are measured along the pinion axis and perpendicular to

this axis, respectively.
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OIR: Root Cone Apex

(ThF: Face Cone Apex

Figure 9.5: Mean Point
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Combining equation (9.23) with surface equation (9.21), we may obtain two nonlinear equations
S(), 0(o)),

in terms of ( 1 9F),

X1(€ 01 I )O = XL + Z,
(9.24)

(, 1 (OF ( 0,)) = RL 2

Here, Z, is the pitch cone apex beyond the crossing point 01.

Solving equation system (9.24), we may determine surface coordinates (o),9(O)F for the refer-

ence point and also its Cartesian coordinate (i , Y1 ,Z)

(3). After the reference point is located, the rest of grid points can be chosen with the consid-

eration that the grid points must be located uniformly on the working part of the tooth surface.

(4). Points on surface E(,) that is equidistant to theoretical surface E, can be determined in

Si with the vector equation

p, = ri(¢1,OF) + an,(01, OF) (9.25)

where a is the radius of the ball surface of the probe. Equations (9.24) and (9.25) are represented

in the terms of the Gaussian surface coordinates. Equations (9.25) represent in Si the surface that

might be traced out by the center of the probe if the surface deviations are equal to zero.

9.4 Determination of Reference Point in Coordinate System Sm

We recall that coordinate system S,, is rigidly connected to the coordinate measurement machine

and our purpose is to determine the initial installments of the pinion on the machine to provide

the contact of the probe with the pinion mean surface point.

We consider that the pinion is installed with its back-face flush against the base plane of the

CMM such that the origin of coordinate system Sm, Om, coincides with 01 and thus parameter 1
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is equal to zero (Fig. 9.6). Usually, the measurement process is performed in a coordinate system

SM where the y,,, coordinate of the mean point is zero.

According to drawings of Fig. 9.7, the coordinate transformation from S to S,,, with 0 is

as follows,

[r, ] : [A,][ri] [M,.,,][MIi][rl] (9.26)

0 -sin6 -cos5 0
0 - Cos 6 sin 0

-1 0 0 0 (-7

0 0 0 1

Then we obtain for the reference point

, = ,V-YI sin 6 
- ZI cos6

Yin = -Y CoS 6 + z1 sin 6 (9.28)
Z-n = -XII

We consider that in equations (9.28) coordinates (r), (o) and (") for the reference point are

(o)known and the equation system must be solved for three unknowns. Taking ylL 0, we may

(0) (0)represent the solution for the unknowns xo z7 ,) and 6 as follows

, (1) 2)2 (9.29)

6 _ (Y((")2 + (:I()) + Z~)r> (9.30)
tan - - L__ ._.-.- - (9_302 _o) ( o)y1 Xrn

jo) - (-)"(" - " xi(9.31)
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Figure 9.6: Piion Measurement
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Figure 9.7: Coordinate Transformation
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After obtaining the angle of 6, the theoretical pinion tooth surface E, can be reprecented in Si

by using equation (9.26). Similarly, the unit normal to the theoretical pinion tooth surface can be

represented in Sin as

in] [Lmi][nil] (9.32)

where,

0 - sinb -cos61
1Lfl] = 0 - cosb sin6 (9.33)

-1 0 0

(0) _ r,-) () (o)1T

The coordinates of probe center pin - L MA , I'(r ,iZn )T on surface j(,),n that correspond to

reference point (x("), y( ),. (") ) on theoretical surface EX can be determined in Sm with equation

similar to (9.25). For the initial installment the pinion tooth surface must be brought into contact

with the probe while the probe center is at (X,, , 17o ). Then, the pinion tooth surface is

fixed in the rest of measurement process, while the probe performs the translational motions.

Based on the above considerations, the procedure of initial installment can be obtained as

follows:

(i) Install the probe with coordinates (X2,', ,,, ZTn) that are represented as follows:

1 (0) (0) (0) (
- rn = r + anXM

7(0) () (0)
-n zM + n Z

ere+(0) (0) n0)

H r: n. n and z0) are the components of the theoretical surface normal at the reference

point; a is the radius of the ball surface of the probe.

(ii) Turn the rotary table until the probe contacts the to-be-measured surface. The value of 6 for

this installation is given by equation (9.30).
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9.5 Determihation of Deviations of Real Tooth Surface

We consider in c,,ordinate system SM two surfaces: (i) X:c)t- that might be traced out in S, by

the center ( C the probe if the pinion tooth surface is an idea, surface, and (ii) surface ,, that is

tiaced out in reality by the center of the probe in the case whc-i the pinion tooth surface is a real

surface.

The positiwn vp*,r of the probe center for the theoretical equidistant surface E(,:,, is deter-

mined in S, with the equati n similar to (9.25), i.e.,

tT,, r,,. (Q. Op, . dj) + an (ioj. OFi, dk) (i = 1. 45) (9.35)

BY measurementS of the rLal suiace the position vector of the probe center may be repre;ented

as

R 9, - rjji( p,, (-I A ) , , Fi. dA.) (. 1.... 45) (9.36)

where A, 1(termiries the real location of the probe c-.nter on surface E* and is considered along

the normal t , the theoreti(.al surface.

Subscript 'm" indicau , that both surfaces are represented in S.,: subsc-ipt "i" indicates the

current l))int of the rc.; {o, and OF.' are Gaussian coordinates of the theoretical tooth surface E

that are kn,,wri for each grid point, dj (J 1. 8) ,epresent the linear and angular machine tool

settings designated I E-. A.B.I.A, , ., .", (Fig. 9.1, 9.2, 9.3); d. (k = . 4) represent

the angular machine-tool settings designated by 0., j, i'),,,

Equations (9 35) and (9.36) yield
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a (P - r,) • n ji (9.37)

A =  
(T.,,,- r,j) . n i, (9.38)

The deviation ,)f the real tooth surface N' from the theoretical surface N is measured along the

normal ,, the theoretical surface and can be represented as

.Lb, Ai - a = I, - p.)" (9.39)

Taking ilt,) account equations (9.39 and (9.38) we obtain that

1) t, --.\ A , - (X ,, X ,,," , .... 1 } ; ;,) ,,,, (Z*,, - ZT1I ... ).,, ... (9.40)

w'-e.\,,.;,, Z*,,i) re ilie coordinates of the cent,-r (,f the probe obtained by measurements:

.,i 7,,, ) arn' the coot-'- of 4the center *f thf pro1 , for surface , hat is equidistant

to the deretical surface E,,7
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9.6 Mathematical Aspects of Minimization

We consider two steps for computerized minimization of deviations of real tooth surfaces:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations (see chapter 7).

Step 1., Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The pinion tooth surface in accordance to expressions (9.21) and (9.22) is represented in S, as

follows

r, = IrM ( 1 i.- OFi,(l0j) rt, = nU,,,(01 i,OFi, dA.) (9.41)

[-or simplicity, the subscript 'rn' is dropped in the following derivations. The first order varia-

ti oisf he surface that is caused by the change of machine-tool settings and surface coordinates

is representicd as

Or Or . 4
d -i~ V' £! ±.dj (9.42)

I :,rnal ,(viat'in ,of the sirface at grid point i can be represented by

r (ni) (9.43)
II - .1 .I

vwlwre Wi

1L're ii, is tfie variatiiol l fs rfac, unlit n(rmal : n : I

Sirice we c,,isider Ow firsl o)rder d&,via)ions, w( can represent the deviations 2.,r, bv

72



ari
-r,,i Lr, .ii -ds) . n (9.44)

j=1 o~d

While deriving equation (9.44) we have taken into account that n n 0 because
Jr 

001
vectors rand 0r- lie in the plane that is tangent to the surface.

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will! btain an overdetermined system of n linear equations in eight unknowns represented as

8 0r i

(-A-Ldj) - nj =-~i(.5
j=1 0d

The number of equations, n. is equal to the number of measurements (the number of grid

points). In this example, 8 machine-tool settings are considered. The mathematical aspect of the

pro,blem is the determination of such eight unknowns of Ldj that will mniniize the difference of

the right and left sides of equation system (9.45). One of the widely used methods for the solution

of the overdeternined system of linear equations is the least-square method. In this work we have

used the subroutine DLSQRR of IMSL MATH LIBRARY F7' for the numerical solution.

9.3 Results of Coordinate Measurements and Minimization of Deviations

for lYpoidl pillions

"I'he nurmerical example is based on the experiment that has been performed at the Dana

Corporatiorn (Fort Wayne, USA). The deviations of real pinion tooth surfaces for both sides of the

pinion tooth have been (,btained by measurements on the Zeiss machine. The developed approach

has been used for minimization ofobtained deviations. Fig. 9.8 and Fig. 9.9 illustrate the deviations

_Ji , f the real surface from the theoretical one, that have been obtained by measurements and

calculations for the concave side and convex side, respectively. Based on the corrected machine-
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tool settings, we can manufacture a new surface that will optimally fit the theoretical surface after

the surface is distorted by heat-treatment and manufacturing process, etc. The results of performed

experiment for minimized deviations between the new surface and the theoretical surface are very

favorable, that is illustrated with drawings in Fig. 9.10 and Fig. 9.11 for concave side and convex

side, respectively.

Experimental Data

The experimental data are represented in tables in Appendix (Table B.1-B.7 for concave side,

Table C.1-C.7 for convex side)

(1) Blank data of hypoid pinion

(2) Initial basic machine-tool settings

(3) Coordinates of theoretical surface E

(4) Projections of surface unit normal

(5) C'oordinates of real surface X" (obtained by measuiements)

(6) Corrected machine-tool settings

(7) Corrections of machine-tool settings
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Appenidix A

Table AlI: RESULTS OF MINIMIZATION FOR DANA IYOID GEAR

INPUT DATA T
Pressure Angle OG 21.25"
Cutter diameter 228.6nim

Point Width of Cutter 2.032mmi

BASIC'.,MACIfNE- TOOL SETTINGS:
I'< Vertical Setting) 103.252557-m

I12 (Horizonital Setting) 27.46667m

~4j(MchneRoot Angle) 60.723'
LIXV,,(Machine Center to Back) 0.009677mmii

CORRECTIONS OF MA CHINE- TO OL SETTINGS REQUI RED
V2 (Vertical Setting) -0.000361mmit
11 (Ilorizoiital Setting) -0.250553mir

(Machine Root Angle) 0.260867'
.,,,,(iNacineCenter To Back) -0.543113mmn

( ()IRL(TED MA CHINE- TOOLSETTING;S:
* I (Vertical Setting) 103.2522MT7

T~Ii (Horizontal Setting) 27.21603mm77

?,,)(Machine Roc.- Angle) 60-98391,
* \7(MachineCenter to Back) -0.53343mm
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Table A.2 Coordinates of Theoretical Surface (Convex Side)
(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

1 1 3.128970 0.2903200 -1.660430
1 2 3.149190 0.2766600 -1.612140
1 3 3.169320 0.2630300 -1.563840
1 4 3.189390 0.2494500 -1.515550
1 5 3.209370 0.2358900 -1.467260

2 1 3.247090 0.2322700 -1.715660
2 2 3.267980 0.2179600 -1.664110
2 3 3.288790 0.2036900 -1.612550
2 4 3.309520 0.1894600 -1.561000
2 5 3.330190 0.1752700 -1.509450

3 1 3.364070 0.1699200 -1.770890
3 2 3.385620 0.1549900 -1.716080
3 3 3.407080 0.1401000 -1.661260
3 4 3.428470 0.1252500 -1.606450
3 5 3.449790 0.1104400 -1.551640

4 1 3.479810 0.1032600 -1.826120
4 2 3.501990 0.8771000E-01 -1.768050
4 3 3.524090 0.7221000E-01 -1.709970
4 4 3.546120 0.5676000E-01 -1.651900
4 5 3.568090 0.4134000E-01 -1.593830

5 1 3.594170 0.3223000E-01 -1.881350
5 2 3.616970 0.1609000E-01 -1.820020
5 3 3.639700 O.OOOOOOOE+00 -1.758680
5 4 3.662360 -0.1605000E-01 -1.697350
5 5 3.684950 -0.3206000E-01 -1.636020

6 1 3.707040 -0.4318000E-01 -1.936580
6 2 3.730450 -0.5990000E-01 -1.871980
6 3 3.753790 -0.7658000E-01 -1.807390
6 4 3.777060 -0.9322000E-01 -1.742800
6 5 3.800270 -0.1098100 -1.678210

7 1 3.818290 -0.1230000 -1.991800
7 2 3.842300 -0.1403100 -1.923950
7 3 3.866230 -0.1575700 -1.856100
7 4 3.890110 3.1747800 -1.788260
7 5 3.913920 -0.1919500 -1.720410

8 1 3.927780 -0,2072700 -2.047030
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8 2 3.952370 -0.2251500 -1.975920
8 3 3.976900 -0.2429900 -1.904810
8 4 4.001360 -0.2607900 -1.833710
8 5 4.025760 -0.2785400 -1.762600

9 1 4.035380 -0.2960100 -2.102260
9 2 4.060540 -0.3144800 -2.027890
9 3 4.085640 -0.3329100 -1.953520
9 4 4.110680 -0.3512900 -1.879160
9 5 4.135660 -0.3696300 -1.804790
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Table A.3 Coordinates of Theoretical Surface (Concave Side)
(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

10 1 3.133200 0.1974800 -1.666550
10 2 3.150790 0.2285300 -1.616730
10 3 3.168110 0.2595400 -1.566910
10 4 3.185160 0.2904800 -1.517080
10 5 3.201940 0.3213800 -1.467260

11 1 3.249620 0.1343800 -1.721780
11 2 3.268670 0.1681800 -1.668700

11 3 3.287400 0.2019200 -1.615620
11 4 3.305810 0.2356100 -1.562530
11 5 3.323910 0.2692400 -1.509450

12 1 3.364720 0.6628000E-01 -1.777010
12 2 3.385350 0.1029300 -1.720670
12 3 3.405610 0.1395300 -1.664330
12 4 3.425490 0.1760700 -1.607980

12 5 3.445010 0.2125400 -1.551640

13 1 3.478340 -0.6930000E-02 -1.832240
13 2 3.500690 0.3269000E-01 -1.772640
13 3 3.522590 0.7226000E-01 -1.7i3040
13 4 3.544070 0.1117600 -1.653440

13 5 3.565120 0.1511900 -1.593830

14 1 3.590310 -0.8535000E-01 -1.887470
14 2 3.614510 -0.4265000E-01 -1.824610
14 3 3.638210 0.OOOOOOOE+00 -1.761750
14 4 3.661400 0.4258000E-01 -1.698890
14 5 3.684110 0.8508000E-01 -1.636020

15 1 3.700440 -0.1691000 -1.942700
15 2 3.726650 -nl1232100 -1.876580

15 3 3.752280 -0.7736000E-01 -1.810460
15 4 3.777330 -0.3159000E-01 -1.744340
15 5 3.801830 0.1411000E-01 -1.678210

16 1 3.808520 -0.2583200 -1.997930
16 2 3.836920 -0.2091100 -1.928550
16 3 3.864640 --0.1599500 -1.859170
16 4 3.891700 -0.1108600 -1.789790
16 5 3.918130 -0.6185000E-01 -1.720410

17 1 3.914360 -0.3531200 -2.053160
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17 2 3.945110 -0.3004800 -1.980520
17 3 3.975100 -0.2478900 -1.907880
17 4 4.004340 -0.1953600 -1.835240
17 5 4.032850 -0.1429100 -1.762600

18 1 4.017700 -0.4536600 -2.108390
18 2 4.051000 -0.3974800 -2.032490
18 3 4.083450 -0.3413300 -1.956590
18 4 4.115050 -0.2852300 -1.880690
18 5 4.145820 -0.2292100 -1.804790



Table A.4 Projections of Surface Unit Normal (Convex Side)

(represented in Sm (Fig. 3.2))

XN (inch) YN (inch) ZN (inch)

1 1 0.4496000 0.8910000 0.6380000E-01

1 2 0.4500000 0.8908000 0.6360000E-01

1 3 0.4504000 0.8906000 0.6350000E-01

1 4 0.4508000 0.8904000 0.6330000E-01

1 5 0.4512000 0.8902000 0.6310000E-01

2 1 0.4743000 0.8789000 0.5180000E-01

2 2 0.4747000 0.8786000 0.5150000E-01

2 3 0.4751000 0.8784000 0.5130000E-01

2 4 0.4755000 0.8782000 0.5110000E-01

2 5 0.4759000 0.8780000 0.5090000E-01

3 1 0.4988000 0.8658000 0.3990000E-01

3 2 0.4992000 0.8656000 0.3960000E-01

3 3 0.4997000 0.8653000 0.3940000E-01

3 4 0.5001000 0.8651000 0.3920000E-01

3 5 0.5006000 0.8648000 0.3900000E-01

4 1 0.5231000 0.8518000 0.2820000E-01

4 2 0.5236000 0.8515000 0.2790000E-01

4 3 0.5241000 0.8512000 0.2770000E-01

4 4 0.5246000 0.8509000 0.2750000E-01

4 5 0.5251000 0.8506000 0.2720000E-01

5 1 0.5472000 0.8368000 0.1670000E-01

5 2 0.5478000 0.8365000 0.1650000E-01

5 3 0.5483000 0.8361000 0.1620000E-01

5 4 0.5489000 0.8358000 0.1600000E-01

5 5 0.5494000 0.8354000 0.1570000E-01

6 1 0.5711000 0,8208000 0.5500000E-02

6 2 0.5717000 0.8204000 0.5200000E-02

6 3 0.5723000 0.8200000 0.50000OOE-02

6 4 0.5729000 0.8196000 0.4700000E-02

6 5 0.5735000 0.8192000 0.4400000E-02

7 1 0.5947000 0.8039000 -0.5400000E-02

7 2 0.5954000 0.8034000 -0.5700000E-02

7 3 0.5961000 0.8029000 -0.6000000E-02

7 4 0.5967000 0.8024000 -0.6300000E-02

7 5 0.5974000 0.8019000 -0.6700000E-02

8 1 0.6180000 0.7860000 -0.1610000E-01
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8 2 0.6188000 0.7854000 -0.1640000E-01
8 3 0.6195000 0.7?48000 -0.'680000E-01
8 4 0.6203000 0 7842000 -0.1710000E-G1
8 5 0.6210000 0.7836000 -0.17400C'E-Ul

9 1 0.6410000 0.7671000 -0.2640000E-01
9 2 0.6419000 0.7664000 -0.268000CE-01
9 3 0.6427000 0.7656000 -0.2720000E-01
9 4 0.6435000 0.7649000 -0.2760000E-01
9 5 0.6444000 3.7642000 -0.2790000E-01
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Table A.5 Projections of Surface Unit Normal (Concave Side)
(represented in Sm (Fig. 3.2))

XN (inch) YN (inch) ZN (inch)

10 1 -0.1557000 -0.8123000 0.5620000
10 2 -0.1524000 -0.8141000 0.5604000
10 3 -0.1492000 -0.8159000 0.5587000
10 4 -0.1459000 -0.8176000 0.5570000
10 5 -0.1426000 -0.8193000 0.5553000

i1 1 -0.1789000 -0.7991000 0.5740000
11 2 -0.1753000 -0.8012000 0.5721000
11 3 -0.1718000 -0.8033000 0.5703000
11 4 -0.1682000 -0.8053000 0.5685000
11 5 -0.1646000 -0.8073000 0.5667000

12 1 -0.2019000 -0.7850000 0.5857000
12 2 -0.1981000 -0.7874000 0.5838000
12 3 -0.1943000 -0.7898000 0.5818000
12 4 -0.1904000 -0.7922000 0.5799000
12 5 -0.1865000 -0.7945000 0.5779000

13 1 -0.2248000 -0.7699000 0.5973000
13 2 -0.2207000 -0.7727000 0.5952000
13 3 -0.2166000 -0.7754000 0.5931000
13 4 -0.2124000 -0.7782000 0.5911000
13 5 -0.2083000 -0.7809000 0.5889000

14 1 -0.2475000 -0.7538000 0.6087000
14 2 -0.2431000 -0.7570000 0.6065000
14 3 -0.2387000 -0.7602000 0.6043000
14 4 -0.2343000 -0.7633000 0.6021000
14 5 -0.2298000 -0.7664000 0.5999000

15 1 -0.2699000 -0.7367000 0.6200000
15 2 -0.2653000 -0.7404000 0.6176000
15 3 -0.2606000 -0.7440000 0.6153000
15 4 -0.2559000 -0.7475000 0.6130000
15 5 -0.2512000 -0.7510000 0.6106000

16 1 -0.2922000 -0.7187000 0.6310000
16 2 -0.2872000 -0.7228000 0.6285000
16 3 -0.2823000 -0.7268000 0.6261000
16 4 -0.2773000 -0.7309000 0.6236000
16 5 -0.2724000 -0.7348000 0.621606o

17 1 -0.3141000 -0.6996000 0.6418000
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17 2 -0.3090000 -0.7042000 0.6393000
17 3 -0.3038000 -0.7088000 0.6367000
17 4 -0.2986000 -0.7133000 0.6341000
17 5 -0.2933000 -0.7177000 0.6315000

18 1 -0.3359000 -0.6794000 0.6524000
18 2 -0.3304000 -0.6846000 0.6497000
18 3 -0.3250000 -0.6897000 0.6471000
18 4 -0.3195000 -0.6947000 0.6444000
18 5 -0.3140000 -0.6997000 0.6417000
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Table A.6 Coordinates of Real Tooth Surface (Convex Side)
(represented in Sm (Fig. 3.2))

XM (inch) YH (inch) ZM (inch)

1 1 3.129490 0.2913500 -1.660350
1 2 3.149700 0.2776800 -1.612060
1 3 3.169750 0.2638600 -1.563780
1 4 3.189690 0.2500400 -1.515510
1 5 3.209520 0.2361800 -1.467240

2 1 3.247520 0.2330600 -1.715610
2 2 3.268290 0.2185300 -1.664070
2 3 3.289010 0.2041000 -1.612530
2 4 3.309610 0.1896300 -1.560990
2 5 3.330130 1.1751800 -1.509460

3 1 3.364450 0.1705700 -1.770860
3 2 3.385850 0.1553900 -1.716060
3 3 3.407190 0.1402900 -1.661260
3 4 3.428470 0.1252400 -1.606450
3 5 3.449590 0.1101000 -1.551660

4 1 3.480060 0.1036700 -1.826100
4 2 3.502140 0.8796000E-01 -1.768040
4 3 3.524200 0.7239000E-01 -1.709970
4 4 3.546040 0.5661000E-01 -1.651910
4 5 3.567790 0.4086000E-01 -1.593850

5 1 3.594330 0.3248000E-01 -1.881340
5 2 3.617010 0.1615000E-01 -1.820010
5 3 3.639690 -0.2000000E-04 -1.758680
5 4 3.662250 -0.1622000E-01 -1.697360
5 5 3.684770 -0.3233000E-01 -1.636030

6 1 3.707180 -0.4297000E-01 -1.936570
6 2 3.730500 -0.5983000E-01 -1.871980
6 3 3.753810 -0.7655000E-01 -1.807390
6 4 3.777040 -0.9324000E-01 -1.742800
6 5 3.800210 -0.1098800 -1.678210

7 1 3.818310 -0.1229700 -1.991800
7 2 3.842330 -0.1402600 -1.923950
7 3 3.866260 -0.1575300 -1.856100
7 4 3.890240 -0.1746000 -1.788260
7 5 3.914230 -0.1915300 -1.720410

8 1 3.927840 -0.2071900 -2.047030
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8 2 3.952510 -0.2249800 -1.975930
8 3 3.977000 -0.2428600 -1.904820
8 4 4.001410 -0.2607300 -1.833710
8 5 4.025690 -0.2786400 -1.762590

9 1 4.035370 -0.2960200 2126
9 2 4.060560 -0.3144600 -2.027890
9 3 4.085710 -0.3328300 -1.953530
9 4 4.110690 -0.3512800 -1.879160
9 5 4.135620 -0.3696800 -1.804780
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Table A.7 Coordinates of Real Tooth Surtace (Concave Side)

(represented in Sm (Fig. 3.2))

XM (inch) YM (inch) ZM (inch)

10 1 3.132990 0.1964100 -1.665810

10 2 3.150610 0.2275400 -1.616050

10 3 3.167920 0.2585200 -1.566210

10 4 3.184990 0.2895700 -1.516460

10 5 3.201810 0.3206400 -1.466760

11 1 3.249400 0.1334300 -1.721100

11 2 3.268500 0.1673900 -1.668130

11 3 3.287250 0.2012300 -1.615120

11 4 3.305660 0.2349100 -1.562040

11 5 3.323800 0.2687000 -1.509070

12 1 3.364540 0.6559000E-01 -1.776500

12 2 3.385210 0.1023500 -1.720240

12 3 3.405490 0.1390500 -1.663970

12 4 3.425410 0.1757200 -1.607730
12 5 3.444970 0.2123700 -1.551520

13 1 3.478190 -0.7460000E-02 -1.831830

13 2 3.500600 0.3238000E-01 -1.772390

13 3 3.522530 0.7202000E-01 -1.712860
13 4 3.544050 0.1116800 -1.653370
i3 5 3.565170 0.1513600 -1.593960

14 1 3.590180 -0.8574000E-01 -1.887160
14 2 3.614450 -0.4283000E-01 -1.824460

14 3 3.638200 -0.1000000E-04 -1.761740
14 4 3.661460 0.4279000E-01 , -1.699050
14 5 3.684250 0.8554000E-01 -1.636390

15 1 3.700360 -0.1693200 -1.942510

15 2 3.726640 -0.1232300 -1.876550

15 3 3.752350 -0.7716000E-01 -1.810620

15 4 3.777450 -0.3124000E-01 -1.744620

15 5 3.802060 0.1480000E-01 -1.678780

16 1 3.808470 --0.2584400 -1.997820

16 2 3.836960 -0.2090000 -1.928640

16 3 3.864780 -0.1596000 -1.859460

16 4 3.891920 -0.1102900 -1.790270

16 5 3.918530 -0.6077000E-01 -1.721310

17 1 3.914340 -0.3531600 -2.053120
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17 2 3.945230 -0.3002000 -1.980770
17 3 3.97531U -0.2474000 -1.908320
17 4 4.004620 -0.1946900 -1.835830
17 5 4.033320 -0.1417500 -1.763610

18 1 4.017820 -0.4534000 -2.108630
10 2 4.051260 -0.3969500 -2.032980
18 3 4.083780 -0.3406200 -1.957250
18 4 4.115450 -0.2843600 -1.881500
18 5 4.146320 -0.2280800 -1.805820
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TABLE B.I. BLANK DATA OF HYPOID PINION *

NUMBER OF TEETH: 13

SHAFT ANGLE; 1.57079 radians

PITCH DIAMETER: 88.22 mm

OUTSIDE DIAMETER: 103.96 mm

PITCH ANGLE: 0.32055 radians

FACE ANGLE: 0.41480 radians

ROOT ANGLE: 0.30136 radians

MEAN SPIRAL ANGLE: 0.84677 radians

FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.
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* TABLE B.2 BASIC PINION MACHINE-TOOL SETTINGS (CONCAVE SIDE)*

BASIC TILT ANGLE CI = 0.4104054 radians
SWIVEL ANGLE : CJ = 6.000656 radians
MACHINE ROOT ANGLE : RGMAIM = 6.229372 radians
CRADLE ANGLE : QC = 1.566173 radians
RADIAL SETTING SR = 109.6660 mm

SLIDING BASE : DELTB = 14.82000 mm
MACHINE CENTE.R TO BACK:DELTA = -3.100000 mm
BLANK OFFSET EM = -34.58000 mm
CUTTING RATIO FMI = 0.3230215
CUTTER POINT RADIUS RCF = 113.0300 mm
CUhTER BLADE ANGLE PHIVIC = 0.2443461 radians
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Table B.3 Coordinates of Theoretical Sur~a-e (Concave Side)

(represented in Sm (Fig. 3.2))
9I, ic

XT (inch) YT (inch) ZT (inch)

1 1 1.182150 0.5780900 -2.843880

1 2 1.209360 0.6126500 -2.830410

1 3 1.234970 0.6497300 -2.816930

1 4 1.258970 0.6891100 -2.803460

1 5 1.281330 0.7306100 -2.789990

2 1 1.288970 0.4359300 -2.987910

2 2 1.323870 0.4692300 -2.973160

2 3 1.357280 0.5057100 -2.958410

2 4 1.389190 0.5450800 -2.943660

2 5 1.419540 0.5871400 -2.928910

3 1 1.376770 0.2825600 -3.131950

3 2 1.419280 0.3132400 -3.115920

3 3 1.460570 0.3477800 -3.099890

3 4 1.500570 0.3858300 -3.083860

3 5 1.539180 0.4271500 -3.067830

4 1 1.445230 0.1203900 -3.275980

4 2 1.495080 0.1471400 -3.258680

4 3 1.544110 0.1784300 -3.241370

4 4 1.592160 0.2138500 -3.224060

4 5 1.639110 0.2531100 -3.206760

5 1 1.494220 -0.4833000E-01 -3.420020

5 2 1.550950 -0.2678000E-01 -3.401440

5 3 1.607360 0.0000000E+00 -3.382850

5 4 1.663240 0.3151000E-01 -3.364260

5 5 1.718400 0.6741000E-01 -3.345680

6 1 1.523750 -0.2215400 -3.564050

6 2 1.586690 -0.2063300 -3.544190

6 3 1.649960 -0.1852600 -3.524330

6 4 1.713260 -0.1589100 -3.504460

6 5 1.776320 -0.1276300 -3.484600

7 1 1.533930 -0.3972700 -3.708090

7 2 1.602270 -0.3894600 -3.686950

7 3 1.671710 -0.3752200 -3.665810

7 4 1.741850 -0.3551800 -3.644660

7 5 1.812330 -0.3297300 -3.623520

8 1 1.524960 -0.5736900 -3.852120
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8 2 1.597730 -0.574230(1 -3.829700
8 3 1.672520 -0.5678200 -3.807290
8 4 1.748770 -0.5551500 -3.784870
8 5 1.826030 -0.5366800 -3.762440

9 1 1.497150 -0.7400500 -3.996160
9 2 1.573260 -0.7587S00 --3.072460
0 3 I.fS2420 -0.7610400 -3.948760
9 4 1.733010 -0.75674n0 -3.02507N
9 1.817170 -0.7462900 -3.901370
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T'ble B.4 Projections of Surface Unit Normal (Concave Side)
(represented in Sm (Fig. 3.2))

XN (inch) YN (inch) ZN (inch)

1 1 0.2974000 --0.5635000 0.7707000
1 2 0.3205000 -0.5308000 0.7846000
1 3 0.3390000 -0.5003000 0.7967000
1 4 0.3540000 -0.4716000 0.8076000
1 5 0.3662000 -0.4445000 0.8175000

2 1 0.2173000 -0.6032000 0.7674000
2 2 0.2467000 -0.5716000 0.7826000
2 3 0.2704000 -0.5419000 0.795S900
2 4 0.2809000 -0.5138000 0.8074000
2 5 0.3061000 -0.4871000 0.8180000

3 1 0.1340000 -0.6303000 0.7647000
1 2 0.1696000 -0.6008000 0.7812000
3 3 0.1984000 -0.5728000 0.7953000
3 4 0.2223000 -0.5460000 0.8077000
3 5 0.2424000 -0.5203000 0.8189000

4 1 0.4920000E 01 -0.6450000 0.7626000
4 2 0.90000OE-01 -0.6187000 0.7804000
4 3 0.1246000 -0.5932000 0.7954000
4 4 0.1527000 -0.5684000 0.8085000
4 5 0.1764000 -0.5443000 0.8202000

S 1 -0.351000OE-01 -0.6479000 0.7609000
5 2 0.12100OOE-01 -0.6257000 0.7800000
5 3 0.503000OE-01 -0.6033000 0.7959000

4 0.822oOOOE-01 -0.5811000 0.8096000
5 5 0.1093000 -0.5592000 0.8218000

6 1 -0.1182000 -0.6395000 0.7597000
6 2 -0.655OOOE-01 -0.6222000 0.7801000
6 3 -0.2320000E-01 -0.6038000 0.7968000
6 4 0.1210000E-01 -0.5847000 0.8112000
6 5 0.42200tIE-01 -0.5653000 0.8238000

7 1 0.1983000 -0.6203000 0.7589000
7 2 -0.1408000 -0.6090000 0.7806000
7 3 0.9480000E-01 -0.5949000 n.798)00
7 4 0.5650000E-01 -0.5794000 0.8131000
7 5 -0.2380000E-01 -0.5630000 0.8261000

8 1 0.2742000 --0.5913000 0.7584000
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8 2 -0.2126000 -0.5865000 0.7815000
8 3 -0.1637000 -0.5774000 0.7999000
8 4 -0.1228000 -0.5659000 0.8153000
8 5 -0.8790000E-01 -0.5528000 0.8287000

9 1 -0.3452000 -0.5531000 0.7582000
9 2 -0.2800000 -0.5557000 0.7828000
9 3 -0.2287000 -0.5520000 0.8019000
9 4 -0.1859030 -0.5447000 0.8178000
9 5 -0.1492000 -0.5352000 0.8315000
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Table B.5 Coordinates of Real Tooth Surface (Cor.cave Side)
(represented in Sm (Fig. 3.2))

XM (inch) YM (inch) ZM (inch)

1 1 1.182490 0.5774400 -2.843000
1 2 1.209710 0.6120800 -2.829570
1 3 1.235370 0.6491400 -2.816000
1 4 1.259370 0.6885800 -2.802550
1 5 1.281660 0.7302100 -2.789240

2 1 1.289150 0.4354400 -2.987290
2 2 1.324080 0.4687300 -2.972470
2 3 1.357500 0.5052700 -2.957760
2 4 1.389440 0.5446400 -2.942970
2 5 1.419790 0.5867400 -2.928240

3 1 1.376840 0.2822200 -3.131530
3 2 1.419380 0.3129000 -3.115470
3 3 1.460680 0.3474600 -3.099450
3 4 1.500700 0.3855100 -3.083390
3 5 1.539330 0.4268400 -3.067350

4 1 1.445240 0.1202400 -3.275810
4 2 1.495120 0.1468700 -3.258340
4 3 1.544150 0.1782300 -3.241110
4 4 1.592220 0.2136500 -3.223780
4 5 1.639160 0.2529300 -3.206490

5 1 1.494220 -0.4821000E-01 -3.420160
5 2 1.550940 -0.2677000E-01 -3.401440
5 3 1.607360 -0.3000000E-04 -3.382810
5 4 1.663250 0.3146000E-01 -3.364200
5 5 1.718400 0.6741000E-01 -3.345680

6 1 1.523800 -0.2212400 -3.564410
6 2 1.586700 -0.2061600 -3.544400

3 1.649970 -0.1850500 -3.524610
J 4 1.713260 -0.1587900 -3.504630
6 5 1.776310 -0.1274600 -3.484840

7 1 1.534060 -0.3968400 -3.708610
7 2 1.602350 -0.3891100 -3.687400
7 3 1.671760 -0.3749500 -3.666170
7 4 1.741880 -0.3548900 -3.645060
7 5 1.812340 -0.3294500 -3.623940

8 1 1.525250 -0.5730800 -3.852910

98



8 2 1.597910 -0.5737500 -3.830330
8 3 1.672650 -0.5673700 -3.807900
8 4 1.748860 -,,.55473()0 -3.785470
8 5 1.826090 -0.5362900 -3.763030

9 1 1.497600 -0.7483300 -3.997150
9 2 1.573590 -0.7580900 -3.973390
9 3 1.652680 -0.7604100 -3.949680
9 4 1.734090 -0.7562000 -3.925870
9 5 1.817310 -0.7457900 -3.902150
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TABLE B.6 CORRECTED MACHINE-TOOL SETTINGS (CONCAVE SIDE) *

BASIC TILT ANGLE : CI = 0.4360375 radians
SWIVEL ANGLE : CJ = 6.042021 radians

MACHINE ROOT ANGLE : RGMAIM = 6.202894 radians

CRADLE ANGLE : QC = 1.573228 radians

RADIAL SETTING : SR = 110.4463 mm

SLIDING BASE : DELTB = 14.82000 mm

MACHINE CENTER TO BACK:DELTA = -3.970493 mm
BLANK OFFSET : EM = -35.45049 mm

CUTTING RATIO FM1 = 0.3230215
CUTTER POINT RADIUS : RCF = 113.0300 mm

CUTTER BLADE ANGLE PHIVIC = 0.2443461 radians

TABLE B.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONCAVE SIDE)

BLANK OFFSET: EM =-0.8704924 mm
MACHINE CENTER TO BACK:DELTA =-0.5540259 mm

SLIDING BASE : DELTB = 0.0000000E+00 mm

MACHINE ROOT ANGLE : RGMAIM =-0.2647799E-01 radians
RADIAL SETTING : SR 0.7803197 mm

CRADLE ANGLE : QC = 0.7054806E-02 radians
SWIVEL ANGLE : CJ = 0.4136530E-01 radians

TILT ANGLE : CI = 0.2563208E-01 radians
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* TABLE C.I. BLANK DATA OF HYPOID PINION

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians
PITCH DIAMETER: 88.22 mm
OUTSIDE DIAMETER: 103.96 mm
PITCH ANGLE: 0.32055 radians
FACE ANGLE: 0.41480 radians
ROOT ANGLE: 0.30136 radians
MEAN SPIRAL ANGLE: 0.84677 radians
FACE WIDTH: 38.30 mm
WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.

" TABLE C.2 BASIC PINION MACHINE-TOOL SETTINGS (CONVEX SIDE)*

BASIC TILT ANGLE : CI = 0.3761899 radians
SWIVEL ANGLE : CJ = 5.766247 radians

MACHINE ROOT ANGLE : RGMAIM = 6.233736 radians
CRADLE ANGLE : QC = 1.436986 radians
RADIAL SETTING : SR = 114.0236 mm

SLIDING BASE : DELTB = 23.87000 mm
MACHINE CENTER TO BACK:DELTA = 3.280000 mm
BLANK OFFSET : EM = -40.12000 mm
CUTTING RATIO : FMI = 0.3020446
CUTTER POINT RADIUS : RCF = 114.9350 mm
CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians
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Table C.3 Coordinates of Theoretical Surface (Convex Side)
(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

1 1 1.135060 0.6650000 -2.844010
1 2 185910 0.6562700 -2.830500
1 3 1.238650 0.6422500 -2.817000
1 4 1.292890 0.6229000 -2.803490
1 5 1.348280 0.5981000 -2.789990

2 1 1.247700 0.5418800 -2.988040
2 2 1.302600 0.5245800 -2.973260
2 3 1.358830 0.5009600 -2.958480
2 4 1.415930 0.4709600 -2.943690
2 5 1.473440 0.4345000 -2.928910

3 1 1.345050 0.4062200 -3.132080
3 2 1.402710 0.3794500 -3.116020
3 3 1.460940 0.3453500 -3.099950
3 4 1.519180 0.3039000 -3.083890
3 5 1.576860 0.2550400 -3.067830

4 1 1.426350 0.2598200 -3.276110
4 2 1.485380 0.2228700 -3.258770
4 3 1.543990 0.1776600 -3.241430
4 4 1.601550 0.1242000 -3.224090
4 5 1.657360 0.6251000E-01 -3.206760

5 1 1.490940 0.1043900 -3.420150
5 2 1.549840 0.5674000E-01 -3.401530
5 3 1.607160 O.OOOOOOOE+00 -3.382910
5 4 1.662140 -0.6574000E-01 -3.364290
5 5 1.713980 -0.1403800 -3.345680

6 1 1.538250 -0.5840000E-01 -3.564180
6 2 1.595460 -0.1170800 -3.544290
6 3 1.649730 -0.1855400 -3.524390
6 4 1.700200 -0.2635800 -3.504500
6 5 1.745960 -0.3510200 -3.484600

7 1 1.567790 -0.2269300 -3.708220
7 2 1.621680 -0.2967900 -3.687040
7 3 1.671120 -0.3769300 -3.665870
7 4 1.715140 -0.4670500 -3.644700
7 5 1.752700 -0.5668300 -3.623520

8 1 1.579130 -0.3995700 -3.852250
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8 2 1.628050 -0.4805600 -3.829800
8 3 1.670840 -0.5721400 -3.807350
8 4 1.70644G -0.6738600 -3.784900
8 5 1.733720 -0.7852500 -3.762440

9 1 1.571890 -0.5747300 -3.996290
9 2 1.614130 -0.6666000 -3.972560
9 3 1.648460 -0.7691300 -3.948830
9 4 1.673700 -0.8817200 -3.925100
9 5 1.688670 -1.003710 -3.901380
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Table C.4 Projections of Surface Unit Normal (Convex Side)
(represented in Sm (Fig. 3.2))

XN (inch) YN (inch) ZN (inch)

1 1 0.2346000 0.8427000 -0.4846000
1 2 0.3030000 0.8339000 -0.4614000
1 3 0.3662000 0.8201000 -0.4397000
1 4 0.4255000 0.8021000 -0.4190000
1 5 0.4816000 0.7803000 -0.3990000

2 1 0.3421000 0.8087000 -0.4785000
2 2 0.4113000 0.7899000 -0.4549000
2 3 0.4747000 0.7664000 -0.4327000
2 4 0.5336000 0.7389000 -0.4114000
2 5 0.5887000 0.7076000 -0.3908000

3 1 0.4408000 0.7622000 -0.4741000
3 2 0.5093000 0.7335000 -0.4502000
3 3 0.5714000 0.7005000 -0.4276000
3 4 0.6283000 0.6636000 -0.4059000
3 5 0.6809000 0.6232000 -0.3848000

4 1 0.5301000 0.7050000 -0.4712000
4 2 0.5964000 0.6666000 -0.4471000
4 3 0.6558000 0.6245000 -0.4243000
4 4 0.7094000 0.5788000 -0.4022000
4 5 0.7580000 0.5297000 -0.3807000

5 1 0.6097000 0.6386000 -0.4695000
5 2 0.6725000 0.5911000 -0.4454000
5 3 0.7278000 0.5403000 -0.4224000
5 4 0.7768000 0.4864000 -0.4001000
5 5 0.8200000 0.4294000 -0.3783000

6 1 0.6792000 0.5646000 -0.4689000
6 2 0.7372000 0.5086000 -0.4448000
6 3 0.7873000 0.4498000 -0.4217000
6 4 0.8305000 0.3884000 -0.3993000
6 5 0.8674000 0.3244000 -0.3774000

7 1 0.7386000 0.4842000 -0.4692000
7 2 0.7906000 0.4203000 -0.4453000
7 3 0.8343000 0.3543000 -0.4223000
7 4 0.8707000 0.2863000 -0.3999000
7 5 0.9003000 0.2163000 -0.3779000

8 1 0.7874000 0.3985000 -0.4703000
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8 2 0.8325000 0.3276000 -0.4467000
8 3 0.8690000 0.2554000 -0.4239000
8 4 0.8976000 0.1817000 -0.4015000
8 5 0.9190000 0.1067000 -0.3795000

9 1 0.3258000 0.3086000 -0.4721000
9 2 0.8630000 0.2317000 -0.4489000
9 3 0.8913000 0.1542000 -0.4264000
9 4 0.9115000 0.7600000E-01 -0.4042000
9 5 0.9240000 -0.2900000E-02 -0.3823000
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Table C.5 Coordinates of Real Tooth Surface (Convex Side)

(represented in Sm (Fig. 3.2))

XM (inch) YM (inch) ZN (inch)

1 1 1.134810 0.6641100 -2.843490
1 2 1.185630 0.6554900 -2.830070
1 3 1.238350 0.6416000 -2.816650
1 4 1.292550 0.6222500 -2.803160
1 5 1.347930 0.5975300 -2.789700

2 1 i.247430 0.5412600 -2.987670
2 2 1.302300 0.5240200 -2.972940
2 3 1.358550 0.5005100 -2.958230
2 4 1.415620 0.4705300 -2.943460
2 5 1.473150 0.4341400 -2.928720

3 1 1.344770 0.4057300 -3.131770
3 2 i.402440 0.3790600 -3.115780
3 3 1.460690 0.3450500 -3.099770
3 4 1.518920 0.3036200 -3.083730
3 5 1.576620 0.2548100 -3.067690

4 1 1.426120 0.2595100 -3.275900
4 2 1.485140 0.2226000 -3.258590
4 3 1.543780 0.1774500 -3.241290
4 4 1.601460 0.1241300 -3.224050
4 5 1.657190 0.6240000E-01 -3.206670

5 1 1.490820 0.1042600 -3.420050
5 2 1.549730 0.5665000E-01 -3.401460
5 3 1.607140 -0.1000000E-04 -3.382900
3 4 1.662070 -0.6578000E-01 -3.364260
5 5 1.713940 -0.1404000 -3.345660

6 1 1.538180 -0.5846000E-01 -3.564130
6 2 1.595550 -0.1170200 -3.544340
6 3 1.649770 --0.1855100 -3.524410
6 4 1.700370 -0.2635000 -3.504580
6 5 1.746120 -0.3509600 -3.484670

7 1 1.567970 -0.2268100 -3.708330
7 2 1.621870 -0.2966800 -3.687150

7 3 1.671390 -0.3768100 -3.666010
7 4 1.715480 -0.4669400 -3.644850
7 5 1.753020 -0.5667500 -3.623650

8 1 1.579410 -0.3994300 -3.852420

106



8 2 1.628470 -0.4803900 -3.830030
8 3 1.671260 -0.5720100 -3.807550
8 4 1.706890 -0.6737700 -3.785100
8 5 1.734280 -0.7851800 -3.762670

9 1 1.572400 -0.5745400 -3.996570
9 2 1.614710 -0.6664400 -3.972860
9 3 1.649080 -0.7690200 -3.949120
9 4 1.674320 -0.8816700 -3.925370
9 5 1.689350 -1.003710 -3.901660
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TABLE C.6 CORRECTED MACHINE-TOOL SETTINGS (CONVEX SIDE)

BASIC TILT ANGLE : CI = 0.3712125 radians

SWIVEL ANGLE : CJ = 5.768892 radians
MACHINE ROOT ANGLE : RGMA1M = 6.236861 radians

CRADLE ANGLE : QC = 1.436096 radians
RADIAL SETTING SR = 113.6455 mm

SLIDING BASE : DELTB = 23.87000 mm
MACHINE CENTER TO BACK:DELTA = 3.767510 mm
BLANK OFFSET EM = -39.63248 mm

CUTTING RATIO FM1 = 0.3020446

CUTTER POINT RADIUS RCF = 114.9350 mm
CUTTER BLADE ANGLE PHIVIC =-0.5410521 radians

TABLE C.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONVEX SIDE) *

BLANK OFFSET: EM = 0-4875103 mm

MACHINE CENTER TO BACK:DELTA = 0.5769074E-01 mm

SLIDING BASE : DELTB = O.OOOOOOOE+00 mm
MACHINE ROOT ANGLE : RGMA1M = 0.3125239E-02 radians
RADIAL SETTING SR =-0.3780939 mm

CRADLE ANGLE : QC =-0.8908187E-03 radians
SWIVEL ANGLE : CJ = 0.2644968E-02 radians

TILT ANGLE CI =-0.4977365E-02 radians
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